• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Machine learning framework to predict nonwoven material properties from fiber graph representations
 
  • Details
  • Full
Options
2022
Journal Article
Title

Machine learning framework to predict nonwoven material properties from fiber graph representations

Abstract
Nonwoven fiber materials are omnipresent in diverse applications including insulation, clothing and filtering. Simulation of material properties from production parameters is an industry goal but a challenging task. We developed a machine learning based approach to predict the tensile strength of nonwovens from fiber lay-down settings via a regression model. Here we present an open source framework implementing the following two-step approach: First, a graph generation algorithm constructs stochastic graphs, that resemble the adhered fiber structure of the nonwovens, given a parameter space. Secondly, our regression model, learned from ODE-simulation results, predicts the tensile strength for unseen parameter combinations.
Author(s)
Antweiler, Dario  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Harmening, Marc
Trier University, Germany
Marheineke, Nicole
Trier University, Germany
Schmeißer, Andre  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Wegener, Raimund  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Welke, Pascal
Uni Bonn
Journal
Software impacts  
Project(s)
ML2R  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Open Access
File(s)
Download (556.01 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1016/j.simpa.2022.100423
10.24406/publica-605
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Nonwoven fiber material

  • Manufacturing

  • Textile fabrics

  • Material property prediction

  • Graph representation

  • Tensile strength behavior

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024