• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Quantum Circuit Evolution on NISQ Devices
 
  • Details
  • Full
Options
September 6, 2022
Conference Paper
Title

Quantum Circuit Evolution on NISQ Devices

Abstract
Variational quantum circuits build the foundation for various classes of quantum algorithms. In a nutshell, the weights of a parametrized quantum circuit are varied until the empirical sampling distribution of the circuit is sufficiently close to a desired outcome. Numerical first-order methods are applied frequently to fit the parameters of the circuit, but most of the time, the circuit itself, that is, the actual composition of gates, is fixed. Methods for optimizing the circuit design jointly with the weights have been proposed, but empirical results are rather scarce. Here, we consider a simple evolutionary strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning. We evaluate our method both via simulation and on actual quantum hardware. Our benchmark problems include the transverse field Ising Hamiltonian and the Sherrington-Kirkpatrick spin model. Despite the shortcomings of current noisy intermediate-scale quantum hardware, we find only a minor slowdown on actual quantum machines compared to simulations. Moreover, we investigate which mutation operations most significantly contribute to the optimization. The results provide intuition on how randomized search heuristics behave on actual quantum hardware and lay out a path for further refinement of evolutionary quantum gate circuits.
Author(s)
Franken, Lukas  
Georgiev, Bogdan  
Mücke, Sascha
TU Dortmund  
Wolter, Moritz
University of Bonn
Heese, Raoul  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Piatkowski, Nico  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE Congress on Evolutionary Computation, CEC 2022. Conference Proceedings  
Project(s)
ML2R  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Conference
Congress on Evolutionary Computation 2022  
World Congress on Computational Intelligence 2022  
Open Access
DOI
10.1109/CEC55065.2022.9870269
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • variational quantum circuits

  • structure learning

  • evolutionary computation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024