• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Causes of Catastrophic Forgetting in Class-Incremental Semantic Segmentation
 
  • Details
  • Full
Options
16 September 2022
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Titel

Causes of Catastrophic Forgetting in Class-Incremental Semantic Segmentation

Titel Supplements
Published on arXiv
Abstract
Class-incremental learning for semantic segmentation (CiSS) is presently a highly researched field which aims at updating a semantic segmentation model by sequentially learning new semantic classes. A major challenge in CiSS is overcoming the effects of catastrophic forgetting, which describes the sudden drop of accuracy on previously learned classes after the model is trained on a new set of classes. Despite latest advances in mitigating catastrophic forgetting, the underlying causes of forgetting specifically in CiSS are not well understood. Therefore, in a set of experiments and representational analyses, we demonstrate that the semantic shift of the background class and a bias towards new classes are the major causes of forgetting in CiSS. Furthermore, we show that both causes mostly manifest themselves in deeper classification layers of the network, while the early layers of the model are not affected. Finally, we demonstrate how both causes are effectively mitigated utilizing the information contained in the background, with the help of knowledge distillation and an unbiased cross-entropy loss.
Author(s)
Kalb, Tobias
Beyerer, Jürgen
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
Thumbnail Image
DOI
10.48550/arXiv.2209.08010
Language
English
google-scholar
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022