Options
2022
Conference Paper
Title
A multi-temporal hyperspectral camouflage detection and transparency experiment
Abstract
Hyperspectral sensors are used to measure the electromagnetic spectrum in hundreds of narrow and contiguous spectral bands. The recorded data exhibits characteristic features of materials and objects. For tasks within the security and defense domain, this valuable information can be gathered remotely using drones, airplanes or satellites. In 2021, we conducted an experiment in Ettlingen, Germany, using a drone-borne hyperspectral sensor to record data of various camouflage setups. The goal was the inference of camouflage detection limits from typical hyperspectral data evaluation approaches for different scenarios. The experimental site is a natural strip of vegetation between two corn fields. Our main experiment was a camouflage garage that covered different target materials and objects. The distance between the targets and the roof of the camouflage garage was modified during the experiment. Together with the target variations, this was done to determine the material dependent detection limits and the transparency of the camouflage garage. Another experiment was carried out using two different types of camouflage nets in various states of occlusion by freshly cut vegetation. This manuscript contains a detailed experiment description, as well as, the first results of the camouflage transparency and occlusion experiment. We show that it is possible to determine the target inside the camouflage garage and that vegetation cover is not suitable additional camouflage for hyperspectral sensors.
Author(s)