• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries
 
  • Details
  • Full
Options
2022
Journal Article
Title

Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries

Abstract
Lithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring-diffusion-conversion of polysulfides to restrain the shuttle effect at practical S-loadings. The systematic analysis (5–50 mg cm−2 of S-loadings) reveals that the unique cathode architecture exhibits reversible S-loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S-loading ratio of 5 mL g−1. The strategy presented here can unlock high S-loading Li–S cells with extended cyclability and high energy density.
Author(s)
Abraham, A.M.
University of Calgary
Thiel, Karsten  
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM  
Shakouri, M.
Centre Canadien de Rayonnement Synchrotron
Xiao, Q.
Centre Canadien de Rayonnement Synchrotron
Paterson, A.
Centre Canadien de Rayonnement Synchrotron
Schwenzel, Julian  
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM  
Ponnurangam, S.
University of Calgary
Thangadurai, V.
University of Calgary
Journal
Advanced energy materials  
DOI
10.1002/aenm.202201494
Language
English
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM  
Keyword(s)
  • expansion tolerant cathodes

  • high areal capacity

  • high energy density

  • lean electrolyte

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024