Options
2022
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title
FrequencyLowCut Pooling - Plug & Play against Catastrophic Overfitting
Title Supplement
Published on ArXiv
Abstract
Over the last years, Convolutional Neural Networks (CNNs) have been the dominating neural architecture in a wide range of computer vision tasks. From an image and signal processing point of view, this success might be a bit surprising as the inherent spatial pyramid de sign of most CNNs is apparently violating basic signal processing laws, i.e. Sampling Theorem in their down-sampling operations. However, since poor sampling appeared not to affect model accuracy, this issue has been broadly neglected until model robustness started to receive more attention. Recent work [18] in the context of adversarial attacks and distribution shifts, showed after all, that there is a strong correlation between the vulnerability of CNNs and aliasing artifacts induced by poor down sampling operations. This paper builds on these findings and introduces an aliasing free down-sampling operation which can easily be plugged into any CNN architecture: FrequencyLowCut pooling. Our experiments show, that in combination with simple and Fast Gradient Sign Method (FGSM) adversarial training, our hyper-parameter free operator substantially improves model robustness and avoids catastrophic overfitting. Our code is available at https://github.com/GeJulia/flc_pooling
Author(s)
Conference
Rights
Under Copyright
Language
English
Keyword(s)