• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Explaining solutions to multi-stage stochastic optimization problems to decision makers
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Explaining solutions to multi-stage stochastic optimization problems to decision makers

Abstract
Decision support systems have become a critical component in the planning processes of companies needing to solve difficult optimization problems. Multi-stage, stochastic optimization problems pose a particular challenge for decision makers, as the uncertainty in the input data makes it hard to determine the correct decisions. The scalable stochastic optimization (SSO) technique proposes a way of solving these problems, but is not able to provide feedback to a decision maker regarding why it makes its decisions. We suggest a mechanism for explaining the feedback of SSO to help decision makers better understand a decision support system’s recommendations.
Author(s)
Tierney, Kevin
Balzereit, Kaja  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bunte, Andreas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Niehörster, Oliver
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
ETFA 2022, 27th International Conference on Emerging Technologies and Factory Automation  
Conference
International Conference on Emerging Technologies and Factory Automation 2022  
DOI
10.1109/etfa52439.2022.9921490
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • decision support

  • stochastic optimization

  • explainability

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024