• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. A learning-based approach for efficient visualization construction
 
  • Details
  • Full
Options
2022
Journal Article
Title

A learning-based approach for efficient visualization construction

Abstract
We propose an approach to underpin interactive visual exploration of large data volumes by training Learned Visualization Index (LVI). Knowing in advance the data, the aggregation functions that are used for visualization, the visual encoding, and available interactive operations for data selection, LVI allows to avoid time-consuming data retrieval and processing of raw data in response to user's interactions. Instead, LVI directly predicts aggregates of interest for the user's data selection. We demonstrate the efficiency of the proposed approach in application to two use cases of spatio-temporal data at different scales.
Author(s)
Sun, Y.
Tianjin University
Li, J.
Tianjin University
Chen, S.
Fudan University
Andrienko, Gennady
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Andrienko, Natalia
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Zhang, K.
United International College
Journal
Visual informatics  
Open Access
DOI
10.1016/j.visinf.2022.01.001
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Interactive exploration

  • Learned index

  • Neural network

  • Spatiotemporal visualization

  • Visualization index

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024