• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. BIOSIG 2021 Special issue on efficient, reliable, and privacy-friendly biometrics
 
  • Details
  • Full
Options
2022
Editorial
Titel

BIOSIG 2021 Special issue on efficient, reliable, and privacy-friendly biometrics

Abstract
This special issue of IET Biometrics, "BIOSIG 2021 Special Issue on Efficient, Reliable, and Privacy-Friendly Biometrics", has as starting point the 2021 edition of the Biometric Special Interest Group (BIOSIG) conference. This special issue gathers works focussing on topics of biometric recognition put under the new light of fostering the efficiency, reliability and privacy of biometrics systems and methods. The "BIOSIG 2021 Special Issue on Efficient, Reliable, and Privacy-Friendly Biometrics" issue contains 12 papers, several of them being extended versions of papers presented at the BIOSIG 2021 conference, dealing with concrete research areas within biometrics such as Presentation Attack Detection for Face and Iris, Biometric Template Protection Schemes and Deep Learning techniques for Biometrics.
Author(s)
Sequeira, Ana Filipa
INESC TEC
Gomez‐Barrero, Marta
Hochschule Ansbach
Damer, Naser
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Lobato Correia, Paulo
Universidade Tecnica de Lisboa -UTL-, Instituto Superior Tecnico -IST-
Zeitschrift
IET biometrics
Project(s)
Next Generation Biometric Systems
Funder
Bundesministerium für Bildung und Forschung -BMBF-
DOI
10.1049/bme2.12101
10.24406/publica-465
File(s)
BIOSIG 2021 Special issue_guest-editorial.pdf (339.2 KB)
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • Lead Topic: Digitized...

  • Lead Topic: Smart Cit...

  • Lead Topic: Visual Co...

  • Research Line: Comput...

  • Research Line: Human ...

  • Research Line: Machin...

  • Biometrics

  • Morphing attack

  • Face recognition

  • Deep learning

  • Machine learning

  • CRISP

  • ATHENE

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
Ā© 2022