• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Characteristics of Quantum Architectures in Reinforcement Learning Applications
 
  • Details
  • Full
Options
2022
Master Thesis
Title

Characteristics of Quantum Architectures in Reinforcement Learning Applications

Abstract
This master thesis shows an advantage in using variational quantum circuits in a reinforcement learning algorithm to solve the Frozen Lake environment. It also looks into expressibility, entanglement and the effective dimension of the quantum circuits used, but no correlations are found between these operational descriptors and the performance of the hybrid quantum-classical reinforcement learning algorithm.
Thesis Note
München, TU, Master Thesis, 2022
Author(s)
Dragan, Theodora-Augustina  
Fraunhofer-Institut für Kognitive Systeme IKS  
Advisor(s)
Mendl, Christian
Technische Universität München  
Lorenz, Jeanette Miriam  orcid-logo
Fraunhofer-Institut für Kognitive Systeme IKS  
Project(s)
Munich Quantum Valley Quantenalgorithmen für die Anwendung, Cloud und Industrie  
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie
Keyword(s)
  • quantum

  • reinforcement learning

  • variational quantum circuit

  • expressibility

  • entanglement

  • effective dimension

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024