• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Uncertainty-Aware Hierarchical Reinforcement Learning Robust to Noisy Observations
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Uncertainty-Aware Hierarchical Reinforcement Learning Robust to Noisy Observations

Abstract
This work proposes UA-HRL, an uncertainty-aware hierarchical reinforcement learning framework for mitigating the problems caused by noisy sensor data. The system is composed of an ensemble of predictive models that learns the environment's underlying dynamics and estimates the uncertainty through their prediction variances and a two-level Hierarchical Reinforcement Learning agent that integrates the uncertainty estimates into the decision-making process. It is also shown how frame-stacking can be combined with the uncertainty estimation for the agent to make better decisions despite the aleatoric noise present in the observations. In the end, results obtained in a simulation environment are presented and discussed.
Author(s)
Schmoeller da Roza, Felippe
Fraunhofer-Institut für Kognitive Systeme IKS  
Mainwork
Future Technologies Conference (FTC) 2022. Proceedings. Vol.1  
Project(s)
IKS-Ausbauprojekt  
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie
Conference
Future Technologies Conference 2022  
DOI
10.1007/978-3-031-18461-1_35
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • reinforcement learning

  • hierarchical reinforcement learning

  • uncertainty

  • uncertainty estimation

  • robustness

  • decision making

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024