• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Low-resolution Iris Recognition via Knowledge Transfer
 
  • Details
  • Full
Options
2022
Conference Paper
Titel

Low-resolution Iris Recognition via Knowledge Transfer

Abstract
This work introduces a novel approach for extremely low-resolution iris recognition based on deep knowledge transfer. This work starts by adapting the penalty margin loss to the iris recognition problem. This included novel analyses on the appropriate penalty margin for iris recognition. Additionally, this work presents analyses toward finding the optimal deeply learned representation dimension for the identity information embedded in the iris capture. Most importantly, this work proposes a training framework that aims at producing iris deep representations from extremely low-resolution that are similar to those of high resolution. This was realized by the controllable knowledge transfer of an iris recognition model trained for high-resolution images into a model that is specifically trained for extremely low-resolution irises. The presented approach leads to the reduction of the verification errors by more than 3 folds, in comparison to the traditionally trained model for low-resolution iris recognition.
Author(s)
Boutros, Fadi
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kähm, Olga
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Fang, Meiling
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kirchbuchner, Florian orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Damer, Naser
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kuijper, Arjan orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Hauptwerk
BIOSIG 2022, 21st International Conference of the Biometrics Special Interest Group. Proceedings
Project(s)
Next Generation Biometric Systems
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Konferenz
Gesellschaft für Informatik, Special Interest Group on Biometrics (BIOSIG International Conference) 2022
Thumbnail Image
DOI
10.1109/BIOSIG55365.2022.9896959
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • Digitized Work

  • Visual Computing as a...

  • Computer Vision (CV)

  • Mensch-Maschine-Inter...

  • Machine Learning (ML)...

  • Iris recognition

  • Biometrics

  • Deep learning

  • Machine learning

  • CRISP

  • ATHENE

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022