• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Wasserstein Dropout
 
  • Details
  • Full
Options
2024
Journal Article
Title

Wasserstein Dropout

Abstract
Despite of its importance for safe machine learning, uncertainty quantification for neural networks is far from being solved. State-of-the-art approaches to estimate neural uncertainties are often hybrid, combining parametric models with explicit or implicit (dropout-based) ensembling. We take another pathway and propose a novel approach to uncertainty quantification for regression tasks, Wasserstein dropout, that is purely non-parametric. Technically, it captures aleatoric uncertainty by means of dropout-based sub-network distributions. This is accomplished by a new objective which minimizes the Wasserstein distance between the label distribution and the model distribution. An extensive empirical analysis shows that Wasserstein dropout outperforms state-of-the-art methods, on vanilla test data as well as under distributional shift in terms of producing more accurate and stable uncertainty estimates.
Author(s)
Sicking, Joachim
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Akila, Maram  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pintz, Maximilian Alexander
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wirtz, Tim  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wrobel, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fischer, Asja
Ruhr-Univ. Bochum  
Journal
Machine learning  
Project(s)
KI Absicherung
ML2R  
EXC 2092: Cyber-Sicherheit im Zeitalter großskaliger Angreifer  
Funder
Bundesministerium für Wirtschaft und Klimaschutz BMWK
Bundesministerium für Bildung und Forschung -BMBF-
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Open Access
DOI
10.1007/s10994-022-06230-8
Additional link
Full text
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Safe Machine Learning

  • Regression Neural Networks

  • Uncertainty Estimation

  • Aleatoric Uncertainty

  • Dropout

  • Object Detection

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024