• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Graph-based tensile strength approximation of random nonwoven materials by interpretable regression
 
  • Details
  • Full
Options
June 15, 2022
Journal Article
Title

Graph-based tensile strength approximation of random nonwoven materials by interpretable regression

Abstract
Nonwoven materials consist of random fiber structures. They are essential to diverse application areas such as clothing, insulation and filtering. A long term goal in industry is the simulation-based optimization of material properties in dependence of the manufacturing parameters. Recent works developed a framework to predict tensile strength properties representing the fiber structure as a stochastic graph. In this paper we present an efficient machine learning approach using a regression model trained on features extracted from the graph, for which we develop a novel graph stretching algorithm. We demonstrate that applying our method to a practically relevant dataset yields similar prediction results as the original ODE approach (R² = 0.98), while achieving a significant speedup by up to three orders of magnitude. This opens the field to optimization, as Monte Carlo simulations accounting for the stochastic nature of nonwovens become easily accessible. Our model generalizes well to unseen parameter combinations. Additionally, our approach produces interpretable results by using a simple linear model for the regression task.
Author(s)
Antweiler, Dario  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Harmening, Marc
Universität Trier  
Marheineke, Nicole
Universität Trier  
Schmeißer, Andre  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Wegener, Raimund  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Welke, Pascal
Universität Bonn  
Journal
Machine learning with applications  
Project(s)
ML2R  
Algorithmic Optimization  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Open Access
DOI
10.1016/j.mlwa.2022.100288
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Nonwoven fiber material

  • Manufacturing

  • Textile fabrics

  • Material property prediction

  • Graph representation

  • Interpretable machine learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024