• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors
 
  • Details
  • Full
Options
2022
Conference Paper
Titel

Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

Abstract
The main question this work aims at answering is: ”can morphing attack detection (MAD) solutions be successfully developed based on synthetic data?”. Towards that, this work introduces the first synthetic-based MAD development dataset, namely the Synthetic Morphing Attack Detection Development dataset (SMDD). This dataset is utilized successfully to train three MAD backbones where it proved to lead to high MAD performance, even on completely unknown attack types. Additionally, an essential aspect of this work is the detailed legal analyses of the challenges of using and sharing real biometric data, rendering our proposed SMDD dataset extremely essential. The SMDD dataset, consisting of 30,000 attack and 50,000 bona fide samples, is publicly available for research purposes.
Author(s)
Damer, Naser
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
López, César Augusto Fontanillo
KU Leuven
Fang, Meiling
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Spiller, Noemie
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Pham, Minh Vu
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Boutros, Fadi
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Hauptwerk
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022. Proceedings
Project(s)
Next Generation Biometric Systems
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Konferenz
Conference on Computer Vision and Pattern Recognition Workshops 2022
DOI
10.1109/CVPRW56347.2022.00167
10.24406/publica-391
File(s)
Privacy-friendly Synthetic Data.pdf (1.97 MB)
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • Lead Topic: Smart Cit...

  • Lead Topic: Visual Co...

  • Research Line: Comput...

  • Research Line: Machin...

  • Biometrics

  • Morphing attack

  • Face recognition

  • Machine learning

  • Deep learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022