• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Inference runtime of a neural network to detect atrial fibrillation on customized RISC-V-based hardware
 
  • Details
  • Full
Options
September 2, 2022
Journal Article
Title

Inference runtime of a neural network to detect atrial fibrillation on customized RISC-V-based hardware

Abstract
As a common heart arrhythmia, atrial fibrillation(AF) is considered to be responsible for up to 15 % of allstrokes. For the diagnosis of AF, long term electrocardiogram(ECG) recordings are widely used. These recordings are ob-tained by Holter monitors or state-of-the-art patch ECG de-vices. Energy efficiency is of critical importance to enablethe use of the patch ECG devices for several days withoutchanging batteries or patches, while maintaining a small andlightweight design. Energy consumption of microcontrollersstrongly depends on their operating frequency. Hence theybenefit from a minimal software run time in clock cycles. Inthis work the impact of customized hardware in combinationwith structural optimization on inference runtime of a neu-ral network (NN), for the detection of AF and embedded ina patch ECG device, is investigated. The combination of opti-mized NN structure with the optimized hardware requires only13 % of the runtime compared to the original NN, while theaccuracy is increased by 0.5 percent points.
Author(s)
Hoyer, Ingo
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Utz, Alexander
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Lüdecke, Andre
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Rohr, Maurice
Technische Universität Darmstadt  
Hoog Antink, Christoph
Technische Universität Darmstadt  
Seidl, Karsten  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Journal
Current directions in biomedical engineering  
Project(s)
AI-based real-time detection of AF and integration into a wearable medical sensor device  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Joint Annual Conference of the Austrian, German and Swiss Societies for Biomedical Engineering 2022  
Open Access
File(s)
Download (889.51 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1515/cdbme-2022-1179
10.24406/publica-382
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Keyword(s)
  • RISC-V

  • accelerators

  • neural networks

  • atrial fibrillation

  • optimization

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024