• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Blood pressure estimation based on electrocardiograms
 
  • Details
  • Full
Options
September 2, 2022
Journal Article
Title

Blood pressure estimation based on electrocardiograms

Abstract
To overcome limitations of currently used blood pressure measurement devices in accuracy, continuity and comfort, we propose an approach for blood pressure estimation from electrocardiogram (ECG) signals only. Thereby, statistical signal features are extracted from the ECG which, eventually, serve as input to a random forest regression. The method is trained and tested on MIMIC III waveform data with a large range of blood pressure values. It obtains a mean absolute error ± standard deviation of 3.73 ± 5.19 mmHg for diastolic blood pressure (DBP) and 5.92 ± 7.23 mmHg for systolic blood pressure (SBP), with Pearson coefficients ΥDBP=0.92 and ΥSBP=0.91 respectively.
Author(s)
Wuerich, Carolin  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Wichum, Felix  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
El-Kadri, Omar
Universität Duisburg-Essen  
Ghantawi, Kusay
Universität Duisburg-Essen  
Grewal, Navraj
Universität Duisburg-Essen  
Wiede, Christian  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Seidl, Karsten  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Journal
Current directions in biomedical engineering  
Conference
Joint Annual Conference of the Austrian, German and Swiss Societies for Biomedical Engineering 2022  
Open Access
File(s)
Download (950.46 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1515/cdbme-2022-1015
10.24406/publica-381
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Keyword(s)
  • blood pressure

  • electrocardiogram

  • random forest regression

  • signal features

  • feature selection

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024