• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Guideline for Deployment of Machine Learning Models for Predictive Quality in Production
 
  • Details
  • Full
Options
May 26, 2022
Journal Article
Title

Guideline for Deployment of Machine Learning Models for Predictive Quality in Production

Abstract
Predicting product quality represents a common area of application of machine learning (ML) in manufacturing. However, manifold challenges occur during the integration of ML models into production processes. Therefore, this paper aims to provide a guideline for the deployment of ML models in production environments. Relevant decisions and steps for deploying models in predictive quality use cases are demonstrated. The results for each component of the proposed guideline - deployment design, productionizing & testing, monitoring, and retraining - have been validated with industry experts including exemplary implementations.
Author(s)
Heymann, Henrik  orcid-logo
Fraunhofer-Institut für Produktionstechnologie IPT  
Kies, Alexander D.  
Fraunhofer-Institut für Produktionstechnologie IPT  
Frye, Maik  
Fraunhofer-Institut für Produktionstechnologie IPT  
Schmitt, Robert H.  
Fraunhofer-Institut für Produktionstechnologie IPT  
Boza, Andrés
Universitat Politècnica de València
Journal
Procedia CIRP  
Project(s)
Centre of Excellence in Production Informatics and Control  
Funding(s)
H2020  
Funder
Conference
Conference on Manufacturing Systems 2022  
Open Access
File(s)
Download (620.77 KB)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
DOI
10.1016/j.procir.2022.05.068
10.24406/h-425840
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
Keyword(s)
  • Artificial Intelligence

  • Deployment

  • Machine Learning

  • Manufacturing

  • Predictive Quality

  • Production

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024