• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters
 
  • Details
  • Full
Options
August 15, 2022
Journal Article
Title

Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters

Abstract
In this study, we compare the electrical and optical signal transduction of nanoscale biosensors based on single-walled carbon nanotubes (SWCNTs). Solution processable single-stranded (ss) DNA-wrapped SWCNTs were used for the fabrication of the distinct sensors. For electrical measurements, SWCNTs were assembled from solution onto pre-patterned electrodes by electric-field-assisted assembly in field-effect transistor (FET) configuration. A combination of micro- and nano-fabrication and microfluidics enabled the integration into a sensing platform that allowed real-time and reversible detection. For optical measurements, the near-infrared (NIR) fluorescence of the SWCNTs was acquired directly from solution. The detection of important biomolecules was investigated in high-ionic strength solution (0.5xPBS). Increase in fluorescence intensities correlated with a decrease in the SWCNTs electrical current and enabled detection of the important biomolecules dopamine, epinephrine, and ascorbic acid. For riboflavin, however, a decrease in the fluorescence intensity could not be associated with changes in the SWCNTs electrical current, which indicates a different sensing mechanism. The combination of SWCNT-based electrical and optical transduction holds great potential for selective detection of biomarkers in next generation portable diagnostic assays.
Author(s)
Clément, Pierrick
Ecole Polytechnique Federale de Lausanne -EPFL-  
Ackermann, Julia
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Sahin-Solmaz, Nergiz
Ecole Polytechnique Federale de Lausanne -EPFL-  
Herbertz, Svenja  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Boero, Giovanni
Ecole Polytechnique Federale de Lausanne -EPFL-  
Kruss, Sebastian  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Brugger, Jürgen
Ecole Polytechnique Federale de Lausanne -EPFL-  
Journal
Biosensors & bioelectronics  
Project(s)
EXC 2033: Ruhr Explores Solvation  
Additive Micro-Manufacturing for Plastic Micro-flectro-Mechanical-Systems  
Funding(s)
H2020-EU.1.1.  
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn
European Commission  
Open Access
DOI
10.1016/j.bios.2022.114642
10.24406/publica-309
File(s)
Biosensors_and_Bioelectronics_2022_Clement.pdf (1.96 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Keyword(s)
  • biosensors

  • carbon nanotubes

  • electrical transduction

  • molecular recognition

  • near-infrared fluorescence

  • neurotransmitter

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024