• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Detection of atrial fibrillation with an optimized neural network on a RISC-V-based microcontroller for efficient integration into ECG patches
 
  • Details
  • Full
Options
August 22, 2022
Conference Paper
Title

Detection of atrial fibrillation with an optimized neural network on a RISC-V-based microcontroller for efficient integration into ECG patches

Abstract
Atrial Fibrillation (AF) is one of the most common heart arrhythmias. It is known to cause up to 15 % of all strokes. In current times, modern detection systems for arrhytmias, such as single-use patch electrocardiogram (ECG) devices, have to be energy efficient, small and affordable. In this work, an artificial neural network (NN) for the detection of AF is optimized to assess the minimum requirements in memory and frequency for inference on the AIRISC, a microcontroller based on the RISC-V instruction set architecture (ISA). The AIRISC will be synthesized as a System-On-Chip (SoC) solution later in the project. Hence, a 32-bit floating-point-based NN was analyzed. To reduce the silicon area needed, the NN was quantized to 8-bit fixed-point integer datatype, as the floating-point unit (FPU) is one of the largest modules in silicon area needed for the SoC. To compensate the losses of quantization, the network is expanded and optimized for run-time and memory requirements. The resulting NN has a 7.5 % lower run-time in clock cycles and 2.2 p.p. lower accuracy as the f1oating-point-based net, while requiring 65 % less memory and no FPU within the hardware. The presented approach can achieve one inference per second at a clock frequency of 62 kHz.
Author(s)
Hoyer, Ingo
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Utz, Alexander
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Lüdecke, Andre
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Richter, Mike  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Wichum, Felix  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Gembaczka, Pierre  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Köhler, Kerstin
Charité – Universitätsmedizin Berlin
Rohr, Maurice
TU Darmstadt  
Hoog Antink, Christoph
TU Darmstadt  
Seidl, Karsten  
Universität Duisburg-Essen, EBS
Mainwork
IEEE Medical Measurements & Applications, MeMeA 2022. Conference Proceedings  
Conference
International Symposium on Medical Measurements and Applications 2022  
DOI
10.1109/MeMeA54994.2022.9856502
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Keyword(s)
  • atrial fibrillation (Afib)

  • artificial intelligence (AI)

  • quantization

  • neural networks

  • RISC-V

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024