• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Transformer-based Fine-Grained Fungi Classification in an Open-Set Scenario
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Transformer-based Fine-Grained Fungi Classification in an Open-Set Scenario

Abstract
Fine-grained fungi classification describes the task of estimating the species of a fungus. The FungiCLEF 2022 challenge started a competition for the best solution to solve this task in an open-set scenario. For our solution, we employ a modern transformer-based classification architecture, use a class-balanced training scheme to handle the class-imbalance and apply heavy data augmentation. We approach the open-set scenario by using the final confidence scores as an indicator for unknown species. With this classification model, we were able to achieve an F1 score of 80.6 and 77.5 on the challenge’s public and private test set, respectively. This resulted in achieving the 7th place in the FungiCLEF 2022 challenge. We provide code at https://github.com/wolfstefan/fungi-classification.
Author(s)
Wolf, Stefan  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum. Proceedings  
Conference
Conference and Labs of the Evaluation Forum 2022  
Open Access
File(s)
Download (953.9 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-242
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Fungi classification

  • Open-set classification

  • FungiCLEF

  • Vision transformer

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024