• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Advantages of Using Triboscopic Imaging: Case Studies on Carbon Coatings in Non-Lubricated Friction Conditions
 
  • Details
  • Full
Options
2022
Journal Article
Title

Advantages of Using Triboscopic Imaging: Case Studies on Carbon Coatings in Non-Lubricated Friction Conditions

Abstract
Triboscopy focuses on the analysis of the temporal evolution of a tribological system, combining local and time-resolved information, most commonly the evolution of friction. In this work, this technique is applied on measurements, which were carried out with a custom-built ultra-high vacuum tribometer in ball-on-disc configuration. Based on these experiments, an extended classification to distinguish different triboscopic features is suggested, depending on the persistence in both track position and time: Uniform, Global, Local, and Sporadic. Further, a filter technique for quantifying triboscopic data regarding this classification is introduced. The new and improved triboscopic techniques are applied to various dry friction measurements of hydrogen-free carbon coatings under varying humidity and pressure. The resulting specific triboscopic features are correlated to wear phenomena, such as counter body coating abrasion, inhomogeneities in the wear track, non-uniform track wear, stick-slip and debris in the contact area, demonstrating the increased analysis and monitoring capabilities when compared to conventional friction curves and wear track images.
Author(s)
Lorenz, Lars  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Makowski, Stefan  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Weihnacht, Volker  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Krause, Matthias
Helmholtz-Zentrum Dresden-Rossendorf -HZDR-  
Lasagni, Andrés-Fabián  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Journal
Materials  
Open Access
DOI
10.3390/ma15124317
Additional link
Full text
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024