• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Masked Face Recognition: Human versus Machine
 
  • Details
  • Full
Options
May 7, 2022
Journal Article
Title

Masked Face Recognition: Human versus Machine

Abstract
The recent COVID‐19 pandemic has increased the focus on hygienic and contactless identity verification methods. However, the pandemic led to the wide use of face masks, essential to keep the pandemic under control. The effect of wearing a mask on face recognition (FR) in a collaborative environment is a currently sensitive yet understudied issue. Recent reports have tackled this by evaluating the masked probe effect on the performance of automatic FR solutions. However, such solutions can fail in certain processes, leading to the verification task being performed by a human expert. This work provides a joint evaluation and in‐depth analyses of the face verification performance of human experts in comparison to state‐of‐the‐art automatic FR solutions. This involves an extensive evaluation by human experts and 4 automatic recognition solutions. The study concludes with a set of take‐home messages on different aspects of the correlation between the verification behaviour of humans and machines.
Author(s)
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Süßmilch, Marius
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fang, Meiling  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kirchbuchner, Florian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Journal
IET biometrics  
Project(s)
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Gesellschaft für Informatik, Special Interest Group on Biometrics and Electronic Signatures (BIOSIG International Conference) 2021  
Open Access
DOI
10.1049/bme2.12077
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Lead Topic: Smart City

  • Lead Topic: Visual Computing as a Service

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine Learning (ML)

  • Biometrics

  • Face recognition

  • Performance evaluation

  • Human vision

  • Machine learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024