• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Pressure Pulse Classification for Flow Disturbance Detection in Micro Diaphragm Pumps
 
  • Details
  • Full
Options
November 8, 2021
Conference Paper
Title

Pressure Pulse Classification for Flow Disturbance Detection in Micro Diaphragm Pumps

Abstract
Micropumps have the potential to complement or even replace infusion pumps used in hospital and home care environments. For safe and reliable operation, error detection must be available for these devices. In this work we present a machine learning based approach that classifies pressure pulses created by a micropump into several operation states (normal operation, air-in-line, upstream- and downstream occlusion). An automated setup to generate these flow states and to automatically read and label the corresponding pressure pulse sensor data was built. Using this setup, a dataset consisting of 12.000 pressure pulses from five micropumps was recorded. Characteristic statistical features for the four flow states were extracted from this dataset using TSfresh. Using these statistical features, a decision tree model was trained. The model achieved a classification accuracy of 93%.
Author(s)
Thalhofer, Thomas  
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Heinrich, Ferdinand
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Hayden, Oliver
Technische Universität München  
Mainwork
MikroSystemTechnik Kongress 2021  
Conference
MikroSystemTechnik Kongress 2021  
Language
English
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024