• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for Semantic Segmentation
 
  • Details
  • Full
Options
May 2022
Journal Article
Title

Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for Semantic Segmentation

Abstract
Data augmentation methods enrich datasets with augmented data to improve the performance of neural networks. Recently, automated data augmentation methods have emerged, which automatically design augmentation strategies. The existing work focuses on image classification and object detection, whereas we provide the first study on semantic image segmentation and introduce two new approaches: SmartAugment and SmartSamplingAugment. SmartAugment uses Bayesian Optimization to search a rich space of augmentation strategies and achieves new state-of-the-art performance in all semantic segmentation tasks we consider. SmartSamplingAugment, a simple parameter-free approach with a fixed augmentation strategy, competes in performance with the existing resource-intensive approaches and outperforms cheap state-of-the-art data augmentation methods. Furthermore, we analyze the impact, interaction, and importance of data augmentation hyperparameters and perform ablation studies, which confirm our design choices behind SmartAugment and SmartSamplingAugment. Lastly, we will provide our source code for reproducibility and to facilitate further research.
Author(s)
Negassi, Misgana  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Wagner, Diane
Univ. Freiburg/Brsg.  
Reiterer, Alexander  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Journal
Algorithms  
Open Access
DOI
10.3390/a15050165
Additional link
Full text
Language
English
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Keyword(s)
  • Data augmentation

  • Hyperparameter optimization

  • Semantic segmentation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024