• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Artificial Intelligence for Electricity Supply Chain automation
 
  • Details
  • Full
Options
2022
Journal Article
Title

Artificial Intelligence for Electricity Supply Chain automation

Abstract
The Electricity Supply Chain is a system of enabling procedures to optimize processes ranging from production to transportation and consumption of electricity. The proportion of distributed energy sources within the electricity system increases steadily, which necessitates an improved monitoring capability to ensure the overall reliability and quality of the Electricity Supply Chain. Automation is strongly required to process the growing amount of data. Thus, it is inevitable to handle large amounts of heterogeneous data and process the information using forecasting and optimization techniques. Artificial Intelligence techniques are crucial for extending human cognitive abilities in these tasks. In our work, we synthesize the main impacts of the Artificial Intelligence paradigm on the automation of the Electricity Supply Chain. We describe the emerging automation through Artificial Intelligence in every layer of the Smart Grid Architecture Model and highlight state-of-the-art approaches. In the review, we focus on the following Electricity Supply Chain functionalities: generation, maintenance, pre-processing, analysis, forecasting, optimization, and trading within energy systems. After investigating the individual perspectives, we examine the potential implementation of a fully automated Electricity Supply Chain. Lastly, we discuss perspectives and limitations for the transformation from conventional to automated Electricity Supply Chains, specifically in terms of human interaction, Artificial Intelligence adaptation, energy transition, and sustainability.
Author(s)
Richter, Lucas
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Lehna, Malte
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Marchand, Sophie
Fraunhofer-Institut für Solare Energiesysteme ISE  
Scholz, Christoph
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Dreher, Marian Alexander  orcid-logo
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Klaiber, Stefan  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Lenk, Steve
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Journal
Renewable & sustainable energy reviews  
Project(s)
CINES Cluster Systemintegration
Funder
Open Access
DOI
10.1016/j.rser.2022.112459
File(s)
358_MLe_Artificial Intelligence.pdf (5.21 MB)
Rights
CC BY
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Electricity supply chain

  • Energy management

  • Energy transition

  • Artificial intelligence automation data

  • processing forecasting optimization

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024