• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes
 
  • Details
  • Full
Options
2022
Konferenzbeitrag
Titel

Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes

Abstract
Models for semantic segmentation require a large amount of hand-labeled training data which is costly and time-consuming to produce. For this purpose, we present a label fusion framework that is capable of improving semantic pixel labels of video sequences in an unsupervised manner. We make use of a 3D mesh representation of the environment and fuse the predictions of different frames into a consistent representation using semantic mesh textures. Rendering the semantic mesh using the original intrinsic and extrinsic camera parameters yields a set of improved semantic segmentation images. Due to our optimized CUDA implementation, we are able to exploit the entire c-dimensional probability distribution of annotations over c classes in an uncertainty-aware manner. We evaluate our method on the Scannet dataset where we improve annotations produced by the state-of-the-art segmentation network ESANet from 52.05% to 58.25% pixel accuracy. We publish the source code of our framework online to foster future research in this area (https://github.com/fferflo/semantic-meshes). To the best of our knowledge, this is the first publicly available label fusion framework for semantic image segmentation based on meshes with semantic textures.
Author(s)
Fervers, Florian
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
Breuer, Timo
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
Stachowiak, Gregor
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
Bullinger, Sebastian
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
Bodensteiner, Christoph
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
Arens, Michael
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
Hauptwerk
17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2022. Proceedings. Vol.5: VISAPP
Konferenz
International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP) 2022
International Conference on Computer Vision Theory and Applications (VISAPP) 2022
Thumbnail Image
DOI
10.5220/0010841800003124
Language
Englisch
google-scholar
IOSB
Tags
  • Semantic Segmentation...

  • Mesh Reconstruction

  • Label Fusion

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022