• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Optimized characteristic-curve-based local reactive power control in distribution grids with distributed generators
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Optimized characteristic-curve-based local reactive power control in distribution grids with distributed generators

Abstract
The local reactive power control in distribution networks with massive penetration of distributed energy resources (DERs) is essential in future power system operation. An appropriate control characteristic curve for DERs providing reactive power supports stable and efficient distribution network operation. In this paper, an innovative approach to obtain an optimized characteristic curve for DERs is proposed. With the power system analysis tool pandapower [1] and an artificial neural network-based optimization tool, a case study with a real German distribution grid is carried out with quasi-static time-series simulation with fast parallel power flow solver backend [2]. The performance of the new approach is compared to the three standard local reactive control concepts, fixed cos Ï control, Q(P)-control, and Q(V)-control.
Author(s)
Liu, Zheng
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Wang, Zhenqi  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Bornhorst, Nils
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Kraiczy, Markus
Wende-von Berg, Sebastian  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Kerber, Tobias
Braun, Martin
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Mainwork
ETG-Kongress 2021  
Conference
Energietechnische Gesellschaft (ETG Kongress) 2021  
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024