• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Efficient Exploration of Microstructure-Property Spaces via Active Learning
 
  • Details
  • Full
Options
2022
Journal Article
Titel

Efficient Exploration of Microstructure-Property Spaces via Active Learning

Abstract
In materials design, supervised learning plays an important role for optimization and inverse modeling of microstructure-property relations. To successfully apply supervised learning models, it is essential to train them on suitable data. Here, suitable means that the data covers the microstructure and property space sufficiently and, especially for optimization and inverse modeling, that the property space is explored broadly. For virtual materials design, typically data is generated by numerical simulations, which implies that data pairs can be sampled on demand at arbitrary locations in microstructure space. However, exploring the space of properties remains challenging. To tackle this problem, interactive learning techniques known as active learning can be applied. The present work is the first that investigates the applicability of the active learning strategy query-by-committee for an efficient property space exploration. Furthermore, an extension to active learning strategies is described, which prevents from exploring regions with properties out of scope (i.e., properties that are physically not meaningful or not reachable by manufacturing processes).
Author(s)
Morand, Lukas
Fraunhofer-Institut für Werkstoffmechanik IWM
Link, Norbert
Hochschule Karlsruhe University of Applied Sciences (HKA)
Iraki, Tarek
Hochschule Karlsruhe University of Applied Sciences (HKA)
Dornheim, Johannes
Hochschule Karlsruhe University of Applied Sciences (HKA); Karlsruher Institut für Technologie (KIT)
Helm, Dirk
Fraunhofer-Institut für Werkstoffmechanik IWM
Zeitschrift
Frontiers in Materials
Project(s)
Maßgeschneiderte Werkstoffeigenschaften durch Mikrostrukturoptimierung: Maschinelle Lernverfahren zur Modellierung und Inversion von Struktur-Eigenschafts-Beziehungen und deren Anwendung auf Blechwerkstoffe
Funding(s)
Sachbeihilfe
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn
Thumbnail Image
DOI
10.3389/fmats.2021.824441
Language
English
google-scholar
Fraunhofer-Institut für Werkstoffmechanik IWM
Tags
  • Active Learning

  • adaptive sampling

  • data generation

  • inverse modeling

  • materials design

  • membership query synt...

  • microstructure-proper...

  • query-by-committee

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022