• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Efficient Exploration of Microstructure-Property Spaces via Active Learning
 
  • Details
  • Full
Options
2022
Journal Article
Title

Efficient Exploration of Microstructure-Property Spaces via Active Learning

Abstract
In materials design, supervised learning plays an important role for optimization and inverse modeling of microstructure-property relations. To successfully apply supervised learning models, it is essential to train them on suitable data. Here, suitable means that the data covers the microstructure and property space sufficiently and, especially for optimization and inverse modeling, that the property space is explored broadly. For virtual materials design, typically data is generated by numerical simulations, which implies that data pairs can be sampled on demand at arbitrary locations in microstructure space. However, exploring the space of properties remains challenging. To tackle this problem, interactive learning techniques known as active learning can be applied. The present work is the first that investigates the applicability of the active learning strategy query-by-committee for an efficient property space exploration. Furthermore, an extension to active learning strategies is described, which prevents from exploring regions with properties out of scope (i.e., properties that are physically not meaningful or not reachable by manufacturing processes).
Author(s)
Morand, Lukas  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Link, Norbert
Hochschule Karlsruhe University of Applied Sciences (HKA)
Iraki, Tarek
Hochschule Karlsruhe University of Applied Sciences (HKA)
Dornheim, Johannes
Hochschule Karlsruhe University of Applied Sciences (HKA); Karlsruher Institut für Technologie (KIT)
Helm, Dirk  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Journal
Frontiers in Materials  
Project(s)
Maßgeschneiderte Werkstoffeigenschaften durch Mikrostrukturoptimierung: Maschinelle Lernverfahren zur Modellierung und Inversion von Struktur-Eigenschafts-Beziehungen und deren Anwendung auf Blechwerkstoffe  
Funding(s)
Sachbeihilfe
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Open Access
DOI
10.3389/fmats.2021.824441
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • Active Learning

  • adaptive sampling

  • data generation

  • inverse modeling

  • materials design

  • membership query synthesis

  • microstructure-property relations

  • query-by-committee

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024