• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Flexible Multi-Channel Analog-Frontend for Ultra-Low Power Environmental Sensing
 
  • Details
  • Full
Options
2021
Journal Article
Title

Flexible Multi-Channel Analog-Frontend for Ultra-Low Power Environmental Sensing

Abstract
The trend towards ubiquitous electronics drives the development of autonomous hardware components with longer operating times. This work presents a novel ultra-low power analog sensor frontend (AFE) for environmental sensing applications. Relevant operation parameters like resolution (6 to 13 bit), sample rate (1 to 7.5 kS/s), voltage gain (-6 to 12 dB), transimpedance (1.5 to 12 M O ), and moving average (1 to 128 taps) are real-time programmable. Four input channels are separately configurable to process voltage, current and potentiometric signals of external or internal sources. The flexible channel-wise configuration enables processing of various signal types and therefore offers a versatile solution for sensors from the Internet-of-Things (IoT) market segment. The AFE integrates switched-capacitor amplifiers, 13 bit, 10 kS/s successive approximation analog-to-digital converter (SAR ADC), bias references, oscillator, digital signal pre-processing and communication in a system-on-chip. A novel sensor power regime supports the flexible read-out of commercial IoT sensors, resulting in excellent power consumption. Fabricated samples in 180nm technology show an ultra-low power consumption of 8.8mW. The SAR ADC achieves 10.6 effective bits while consuming 1.8mW, resulting in a Figure-of-Merit of 116.0 fJ/conv.-step. Measurements with commercial sensors prove the AFE's suitability for an energy-harvester-powered IoT environmental sensor node.
Author(s)
Jotschke, Marcel  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Reichel, Peter  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Carvajal Ossa, Wilmar
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Koh, Jeongwook  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Reich, Torsten
Technische Universität Dresden
Mayr, Christian
Journal
IEEE open journal of circuits and systems  
Project(s)
ZEPOWEL
Funder
Fraunhofer-Gesellschaft FhG
Open Access
DOI
10.1109/OJCAS.2021.3081250
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024