• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Self-restrained Triplet Loss for Accurate Masked Face Recognition
 
  • Details
  • Full
Options
2022
Journal Article
Title

Self-restrained Triplet Loss for Accurate Masked Face Recognition

Abstract
Using the face as a biometric identity trait is motivated by the contactless nature of the capture process and the high accuracy of the recognition algorithms. After the current COVID-19 pandemic, wearing a face mask has been imposed in public places to keep the pandemic under control. However, face occlusion due to wearing a mask presents an emerging challenge for face recognition systems. In this paper, we present a solution to improve masked face recognition performance. Specifically, we propose the Embedding Unmasking Model (EUM) operated on top of existing face recognition models. We also propose a novel loss function, the Self-restrained Triplet (SRT), which enabled the EUM to produce embeddings similar to these of unmasked faces of the same identities. The achieved evaluation results on three face recognition models, two real masked datasets, and two synthetically generated masked face datasets proved that our proposed approach significantly improves the performance in most experimental settings.
Author(s)
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kirchbuchner, Florian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Journal
Pattern recognition  
Open Access
File(s)
Download (1.01 MB)
DOI
10.24406/publica-r-415766
10.1016/j.patcog.2021.108473
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Lead Topic: Smart City

  • Lead Topic: Visual Computing as a Service

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine Learning (ML)

  • biometrics

  • face recognition

  • deep learning

  • machine learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024