• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Validation of XAI Explanations for Multivariate Time Series Classification in the Maritime Domain
 
  • Details
  • Full
Options
2022
Journal Article
Title

Validation of XAI Explanations for Multivariate Time Series Classification in the Maritime Domain

Abstract
Due to the lack of explanation towards their internal mechanism, state-of-the-art deep learning-based classifiers are often considered as black-box models. For instance, in the maritime domain, models that classify the types of ships based on their trajectories and other features perform well, but give no further explanation for their predictions. To gain the trust of human operators responsible for critical decisions, the reason behind the classification is crucial. In this paper, we introduce explainable artificial intelligence (XAI) approaches to the task of classification of ship types. This supports decision-making by providing explanations in terms of the features contributing the most towards the prediction, along with their corresponding time intervals. In the case of the LIME explainer, we adapt the time-slice mapping technique (LimeforTime), while for Shapley additive explanations (SHAP) and path integrated gradient (PIG), we represent the relevance of each input variable to generate a heatmap as an explanation. In order to validate the XAI results, the existing perturbation and sequence analyses for classifiers of univariate time series data is employed for testing and evaluating the XAI explanations on multivariate time series. Furthermore, we introduce a novel evaluation technique to assess the quality of explanations yielded by the chosen XAI method.
Author(s)
Veerappa, Manjunatha  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Anneken, Mathias  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Burkart, Nadia  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Huber, Marco  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Journal
Journal of computational science  
DOI
10.1016/j.jocs.2021.101539
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • maschinelles Lernen

  • Explainable Artificial Intelligence (XAI)

  • Künstliche Intelligenz

  • Klassifikation

  • Schiffbau

  • Schiffsverkehr

  • Zeitreihe

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024