• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Calibrated Simplex Mapping Classification
 
  • Details
  • Full
Options
2021
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Calibrated Simplex Mapping Classification

Title Supplement
Published on arXiv
Abstract
We propose a novel supervised multi-class/single-label classifier that maps training data onto a linearly separable latent space with a simplex-like geometry. This approach allows us to transform the classification problem into a well-defined regression problem. For its solution we can choose suitable distance metrics in feature space and regression models predicting latent space coordinates. A benchmark on various artificial and real-world data sets is used to demonstrate the calibration qualities and prediction performance of our classifier.
Author(s)
Heese, Raoul  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Walczak, Michal
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Bortz, Michael  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Schmid, Jochen  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Link
Link
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024