• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Facies classification from well logs using an inception convolutional network
 
  • Details
  • Full
Options
2017
  • Paper

Titel

Facies classification from well logs using an inception convolutional network

Titel Supplements
Published on arXiv
Abstract
The idea to use automated algorithms to determine geological facies from well logs is not new (see e.g Busch et al. (1987); Rabaute (1998)) but the recent and dramatic increase in research in the field of machine learning makes it a good time to revisit the topic. Following an exercise proposed by Dubois et al. (2007) and Hall (2016) we employ a modern type of deep convolutional network, called \textit{inception network} (Szegedy et al., 2015), to tackle the supervised classification task and we discuss the methodological limits of such problem as well as further research opportunities.
Author(s)
Tschannen, Valentin
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Delescluse, Matthias
École Normale Supérieure
Rodriguez, Mathieu
École Normale Supérieure
Keuper, Janis
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Thumbnail Image
Externer Link
Externer Link
Language
Englisch
google-scholar
ITWM
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022