• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Recurrent Adversarial Service Times
 
  • Details
  • Full
Options
2019
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Recurrent Adversarial Service Times

Title Supplement
Published on arXiv
Abstract
Service system dynamics occur at the interplay between customer behaviour and a service provider's response. This kind of dynamics can effectively be modeled within the framework of queuing theory where customers' arrivals are described by point process models. However, these approaches are limited by parametric assumptions as to, for example, inter-event time distributions. In this paper, we address these limitations and propose a novel, deep neural network solution to the queuing problem. Our solution combines a recurrent neural network that models the arrival process with a recurrent generative adversarial network which models the service time distribution. We evaluate our methodology on various empirical datasets ranging from internet services (Blockchain, GitHub, Stackoverflow) to mobility service systems (New York taxi cab).
Author(s)
Ojeda, César  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Cvejosky, Kostadin  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sánchez, Ramsés J.
Uni Bonn
Schücker, Jannis  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Georgiev, Bogdan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Link
Link
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Service Times

  • Queues

  • Recurrent Point Processes

  • Blockchain Mempool

  • Conditional Adversarial

  • Wasserstein GANs

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024