• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Informed Machine Learning - A Taxonomy and Survey of Integrating Knowledge into Learning Systems
 
  • Details
  • Full
Options
March 29, 2019
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Informed Machine Learning - A Taxonomy and Survey of Integrating Knowledge into Learning Systems

Title Supplement
Published on arXiv
Abstract
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process, which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. First, we provide a definition and propose a concept for informed machine learning, which illustrates its building blocks and distinguishes it from conventional machine learning. Second, we introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Third, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
Author(s)
Rüden, Laura von  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mayer, Sebastian  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Beckh, Katharina  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Georgiev, Bogdan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Giesselbach, Sven  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Heese, Raoul  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Kirsch, Birgit  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pfrommer, Julius  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Pick, Annika  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ramamurthy, Rajkumar  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schuecker, Jannis
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Garcke, Jochen  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Walczak, Michal
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Project(s)
ML2R  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
DOI
10.48550/arXiv.1903.12394
Link
Link
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • machine learning

  • prior knowledge

  • expert knowledge

  • Informed

  • hybrid

  • survey

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024