• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Relational Pattern Benchmarking on the Knowledge Graph Link Prediction Task
 
  • Details
  • Full
Options
2021
Presentation
Title

Relational Pattern Benchmarking on the Knowledge Graph Link Prediction Task

Abstract
Knowledge graphs (KGs) encode facts about the world in a graph data structure where entities, represented as nodes, connect via relationships, acting as edges. KGs are widely used in Machine Learning, e.g., to solve Natural Language Processing based tasks. Despite all the advancements in KGs, they plummet when it comes to completeness. Link Prediction based on KG embeddings targets the sparsity and incompleteness of KGs. Available datasets for Link Prediction do not consider different graph patterns, making it difficult to measure the performance of link prediction models on different KG settings. This paper presents a diverse set of pragmatic datasets to facilitate flexible and problem-tailored Link Prediction and Knowledge Graph Embeddings research. We define graph relational patterns, from being entirely inductive in one set to being transductive in the other. For each dataset, we provide uniform evaluation metrics. We analyze the models over our datasets to compare the models capabilities on a specific dataset type. Our analysis of datasets over state-of-the-art models provides a better insight into the suitable parameters for each situation, optimizing the KG-embedding-based systems.
Author(s)
Sadeghi, Afshin  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Abdul Malik, Hirra
Collarana, Diego  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Lehmann, Jens  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Project(s)
SPEAKER
Cleopatra
TAILOR  
MLwin
ML2R
Funder
Bundesministerium für Wirtschaft und Energie BMWi (Deutschland)  
European Commission EC  
European Commission EC  
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
Conference on Neural Information Processing Systems (NeurIPS) 2021  
Link
Link
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • machine learning

  • Knowledge Graphs Embedding

  • Link Prediction

  • Benchmarking

  • dataset

  • Relational Pattern

  • inductive

  • Transductive

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024