• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Utilizing Representation Learning for Robust Text Classification Under Datasetshift
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Utilizing Representation Learning for Robust Text Classification Under Datasetshift

Abstract
Within One-vs-Rest (OVR) classification, a classifier differentiates a single class of interest (COI) from the rest, i.e. any other class. By extending the scope of the rest class to corruptions (dataset shift), aspects of outlier detection gain relevancy. In this work, we show that adversarially trained autoencoders (ATA) representative of autoencoder-based outlier detection methods, yield tremendous robustness improvements over traditional neural network methods such as multi-layer perceptrons (MLP) and common ensemble methods, while maintaining a competitive classification performance. In contrast, our results also reveal that deep learning methods solely optimized for classification, tend to fail completely when exposed to dataset shift.
Author(s)
Lübbering, Max  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Gebauer, Michael
TU Berlin
Ramamurthy, Rajkumar  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pielka, Maren  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
LWDA 2021 Workshops: FGWM, KDML, FGWI-BIA, and FGIR. Proceedings. Online resource  
Conference
Conference "Lernen, Wissen, Daten, Analysen" (LWDA) 2021  
Open Access
File(s)
Download (889.17 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-fhg-413364
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • dataset shift

  • representation learning

  • outlier detection

  • One-vs-rest classification

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024