• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis
 
  • Details
  • Full
Options
2021
Presentation
Title

Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis

Title Supplement
Published on ArXiv
Abstract
Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained results. We propose a novel framework consisting of a generative label-to-image synthesis model together with different transferability measures to inspect to what extent we can transfer testing results of semantic segmentation models from synthetic data to equivalent real-life data. With slight modifications, our approach is extendable to, e.g., general multi-class classification tasks. Grounded on the transferability analysis, our approach additionally allows for extensive testing by incorporat ing controlled simulations. We validate our approach empirically on a semantic segmentation task on driving scenes. Transferability is tested using correlation analysis of IoU and a learned discriminator. Although the latter can distinguish between real-life and synthetic tests, in the former we observe surprisingly strong correlations of 0.7 for both cars and pedestrians.
Author(s)
Rosenzweig, Julia  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Brito, Eduardo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Kobialka, Hans-Ulrich  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Akila, Maram  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schmidt, Nico M.
CARIAD SE
Schlicht, Peter
CARIAD SE
Schneider, Jan David
Volkswagen AG
Hüger, Fabian
CARIAD SE
Rottmann, Matthias
Uni Wuppertal
Houben, Sebastian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wirtz, Tim  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Project(s)
Machine-Learning Rhein-Ruhr
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
Intelligent Vehicles Symposium (IV) 2021  
Workshop on "Ensuring and Validating Safety for Automated Vehicles" 2021  
File(s)
Download (7.43 MB)
Rights
Use according to copyright law
DOI
10.24406/publica-fhg-413351
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • machine learning

  • simulation-based testing

  • automated driving

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024