• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Statistical and Principal Component Analysis in the Design of Alkaline Methanol Fuel Cells
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Statistical and Principal Component Analysis in the Design of Alkaline Methanol Fuel Cells

Abstract
In this paper, the electrochemical alkaline methanol oxidation process, which is relevant for the design of efficient fuel cells, is considered. An algorithm for reconstructing the reaction constants for this process from the experimentally measured polarization curve is presented. The approach combines statistical and principal component analysis and determination of the trust region for a linearized model. It is shown that this experiment does not allow one to determine accurately the reaction constants, but only some of their linear combinations. The possibilities of extending the method to additional experiments, including dynamic cyclic voltammetry and variations in the concentration of the main reagents, are discussed.
Author(s)
Clees, Tanja  orcid-logo
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Klaassen, Bernhard  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Nikitin, Igor  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Nikitina, Lialia  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Pott, Sabine  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Mainwork
ADVCOMP 2021, Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences  
Conference
International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP) 2021  
Link
Link
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • modeling of complex systems

  • observational data and simulations

  • advanced applications

  • mathematical chemistry

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024