• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Semantic Concept Testing in Autonomous Driving by Extraction of Object-Level Annotations from CARLA
 
  • Details
  • Full
Options
2021
Conference Paper
Titel

Semantic Concept Testing in Autonomous Driving by Extraction of Object-Level Annotations from CARLA

Abstract
With the growing use of Deep Neural Networks (DNNs) in various safety-critical applications comes an increasing need for Verification and Validation (V&V) of these DNNs. Unlike testing in software engineering, where several established methods exist for V&V, DNN testing is still at an early stage. The data-driven nature of DNNs adds to the complexity of testing them. In the scope of autonomous driving, we showcase our validation method by leveraging object-level annotations (object metadata) to test DNNs on a more granular level using human-understandable semantic concepts like gender, shirt colour, age, and illumination. Such an enhanced granularity, as we detail, can prove useful in the construction of closed-loop testing or the investigation of dataset coverage/completeness. Our add-on sensor to the CARLA simulator enables us to generate datasets with this granular metadata. For the task of semantic segmentation for pedestrian detection using DeepLabv3+, we highlight potential insights and challenges that become apparent on this level of granularity. For instance, imbalances within a CARLA generated dataset w.r.t. the pedestrian distribution do not directly carry over into weak spots of the DNN performances and vice versa.
Author(s)
Gannamaneni, Sujan
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Houben, Sebastian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Akila, Maram
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Hauptwerk
IEEE/CVF International Conference on Computer Vision, ICCV 2021
Project(s)
KI-Absicherung
Funder
Bundesministerium für Wirtschaft und Energie BMWi (Deutschland)
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Konferenz
International Conference on Computer Vision (ICCV) 2021
File(s)
N-642829.pdf (4.74 MB)
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022