• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards the Detection and Visual Analysis of COVID-19 Infection Clusters
 
  • Details
  • Full
Options
2021
Conference Paper
Titel

Towards the Detection and Visual Analysis of COVID-19 Infection Clusters

Abstract
A major challenge for departments of public health (DPHs) in dealing with the ongoing COVID-19 pandemic is tracing contacts in exponentially growing SARS-CoV2 infection clusters. Prevention of further disease spread requires a comprehensive registration of the connections between individuals and clusters. Due to the high number of infections with unknown origin, the healthcare analysts need to identify connected cases and clusters through accumulated epidemiological knowledge and the metadata of the infections in their database. Here we contribute a visual analytics framework to identify, assess and visualize clusters in COVID-19 contact tracing networks. Additionally, we demonstrate how graph-based machine learning methods can be used to find missing links between infection clusters and thus support the mission to get a comprehensive view on infection events. This work was developed through close collaboration with DPHs in Germany. We argue how our systems supports the identification of clusters by public health experts and discuss ongoing developments and possible extensions.
Author(s)
Antweiler, Dario
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Sessler, David
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Ginzel, Sebastian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Kohlhammer, Jörn
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Hauptwerk
EuroVA 2021, EuroVis Workshop on Visual Analytics
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Konferenz
International Workshop on Visual Analytics (EuroVA) 2021
DOI
10.2312/eurova.20211097
File(s)
N-642448.pdf (261.12 KB)
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • visual analytic

  • graph theory

  • COVID

  • Corona

  • infection

  • health care informati...

  • Lead Topic: Individua...

  • Research Line: Comput...

  • Research Line: Human ...

  • Research Line: Machin...

  • time series data visu...

  • graph visualization

  • prediction

  • public health

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022