• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Data-driven Process Design Exemplified on the Steam Methane Reforming Process
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Data-driven Process Design Exemplified on the Steam Methane Reforming Process

Abstract
Process design based on physical models often faces computational problems with respect to convergence, especially if the underlying flowsheets are complex. The use of data-driven surrogate models promises to overcome these challenges. This contribution presents the development of surrogate models and their use for flowsheet simulation. A new sampling strategy consisting of a combination of adaptive and sequential sampling enables the selective placement of new sample points. It is shown, however, that this hybrid strategy does not necessarily lead to higher accuracies than a pure sequential sampling. Surrogates are built for selected key units of the steam methane reforming process, and their individual accuracies are analyzed. When the surrogates are combined to form flowsheets, the prediction errors show a tendency to damp from unit to unit. This proves the suitability of surrogate models for flowsheet simulations. The promising results of this paper pave the way for future work, such as the optimization of flowsheets or superstructure optimization.
Author(s)
Lueg, Laurens
AIR LIQUIDE Forschung und Entwicklung GmbH, Innovation Campus Frankfurt
Schack, Dominik
AIR LIQUIDE Forschung und Entwicklung GmbH, Innovation Campus Frankfurt
Örs, Evrim
AIR LIQUIDE Forschung und Entwicklung GmbH, Innovation Campus Frankfurt
Schmidt, Robin
AIR LIQUIDE Forschung und Entwicklung GmbH, Innovation Campus Frankfurt
Bickert, Patricia
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Kurnatowski, Martin von
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Ludl, Patrick Otto  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Bortz, Michael  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Mainwork
31st European Symposium on Computer Aided Process Engineering, ESCAPE 2021  
Conference
European Symposium on Computer Aided Process Engineering (ESCAPE) 2021  
DOI
10.1016/B978-0-323-88506-5.50156-X
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • surrogate modeling

  • adaptive sampling

  • Artificial Neural Networks

  • error propagation

  • hydrogen production

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024