• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Elimination of Current Harmonics in Electrical Machines with Iterative Learning Control
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Elimination of Current Harmonics in Electrical Machines with Iterative Learning Control

Abstract
The magnitude of current harmonics depends on the design of an electrical machine. By suppressing these harmonics noise can be reduced and efficiency improved. Iterative Learning Control (ILC) has proven effective in reducing harmonics. One of the challenges of working with ILC is operation at varying speeds. Variable speeds are particularly important for applications like automotive drives. The ILC period length changes during the learning process at varying speeds. Due to fixed sample rates, the number of values processed by the ILC varies with motor speed. This paper proposes a method to solve this problem and uses ILC at varying speeds. The ILC used to eliminate the harmonics is based on the inverse system. The usage of a two-dimensional memory array is proposed. This data structure holds rows for specific speeds between which interpolation is performed, enabling the elimination of errors which are periodically cyclic to one electrical rotation. This includes the reduction of the motor current harmonics. To verify the presented method a permanent magnet synchronous motor with distinctive 5th and 7th harmonics is used. In real-time implementations, limitations of memory and computational capacity occur.
Author(s)
Mai, A.
Wagner, B.
Streit, F.
Mainwork
10th International Electric Drives Production Conference, EDPC 2020. Proceedings  
Conference
International Electric Drives Production Conference (EDPC) 2020  
DOI
10.1109/EDPC51184.2020.9388177
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024