• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. MixFaceNets: Extremely Efficient Face Recognition Networks
 
  • Details
  • Full
Options
2021
Conference Paper
Titel

MixFaceNets: Extremely Efficient Face Recognition Networks

Abstract
In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, Mix-FaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (< 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation over-head, which proves the practical value of our proposed Mix-FaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets.
Author(s)
Boutros, Fadi
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Damer, Naser
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Fang, Meiling
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kirchbuchner, Florian
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kuijper, Arjan
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Hauptwerk
IEEE International Joint Conference on Biometrics, IJCB 2021
Project(s)
ATHENE
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Konferenz
International Joint Conference on Biometrics (IJCB) 2021
Thumbnail Image
DOI
10.1109/IJCB52358.2021.9484374
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • Lead Topic: Digitized...

  • Lead Topic: Smart Cit...

  • Research Line: Comput...

  • Research Line: Machin...

  • biometrics

  • deep learning

  • machine learning

  • Face recognition

  • Artificial Neural Net...

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022