• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Iris Presentation Attack Detection by Attention-based and Deep Pixel-wise Binary Supervision Network
 
  • Details
  • Full
Options
2021
Conference Paper
Titel

Iris Presentation Attack Detection by Attention-based and Deep Pixel-wise Binary Supervision Network

Abstract
Iris presentation attack detection (PAD) plays a vital role in iris recognition systems. Most existing CNN-based iris PAD solutions 1) perform only binary label supervision during the training of CNNs, serving global information learning but weakening the capture of local discriminative features, 2) prefer the stacked deeper convolutions or expert-designed networks, raising the risk of overfitting, 3) fuse multiple PAD systems or various types of features, increasing difficulty for deployment on mobile devices. Hence, we propose a novel attention-based deep pixel-wise bi-nary supervision (A-PBS) method. Pixel-wise supervision is first able to capture the fine-grained pixel/patch-level cues. Then, the attention mechanism guides the network to automatically find regions that most contribute to an accurate PAD decision. Extensive experiments are performed on LivDet-Iris 2017 and three other publicly available databases to show the effectiveness and robustness of proposed A-PBS methods. For instance, the A-PBS model achieves an HTER of 6.50% on the IIITD-WVU database outperforming state-of-the-art methods.
Author(s)
Fang, Meiling
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Damer, Naser
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Boutros, Fadi
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kirchbuchner, Florian orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Kuijper, Arjan orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Hauptwerk
IEEE International Joint Conference on Biometrics, IJCB 2021
Project(s)
ATHENE
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Konferenz
International Joint Conference on Biometrics (IJCB) 2021
Thumbnail Image
DOI
10.1109/IJCB52358.2021.9484343
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • Lead Topic: Digitized Work

  • Lead Topic: Smart City

  • Research Line: Computer vision (CV)

  • Research Line: Machine Learning (ML)

  • biometrics

  • deep learning

  • machine learning

  • spoofing attacks

  • Iris recognition

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022