• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Decision Snippet Features
 
  • Details
  • Full
Options
May 5, 2021
Conference Paper
Title

Decision Snippet Features

Abstract
Decision trees excel at interpretability of their prediction results. To achieve required prediction accuracies, however, often large ensembles of decision trees random forests are considered, reducing interpretability due to large size. Additionally, their size slows down inference on modern hardware and restricts their applicability in low-memory embedded devices. We introduce Decision Snippet Features, which are obtained from small subtrees that appear frequently in trained random forests. We subsequently show that linear models on top of these features achieve comparable and sometimes even better predictive performance than the original random forest, while reducing the model size by up to two orders of magnitude.
Author(s)
Welke, Pascal
Uni Bonn
Alkhoury, Fouad
Uni Bonn
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wrobel, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
ICPR 2020, 25th International Conference on Pattern Recognition. Proceedings  
Project(s)
ML2R
PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Conference
International Conference on Pattern Recognition (ICPR) 2021  
DOI
10.1109/ICPR48806.2021.9412025
Language
Englisch
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • performance evaluation

  • predictive model

  • hardware

  • pattern recognition

  • decision trees

  • random forests

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024