• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Map-Based Validation of Semantic Segmentation Masks
 
  • Details
  • Full
Options
2020
Presentation
Title

Towards Map-Based Validation of Semantic Segmentation Masks

Title Supplement
Paper presented at 37th International Conference on Machine Learning, ICML 2020, Workshop on AI for Autonomous Driving, AIAD 2020, 12-18 July 2020, Vienna, Austria
Abstract
Artificial intelligence for autonomous driving must meet strict requirements on safety and robustness. We propose to validate machine learning models for self-driving vehicles not only with given ground truth labels, but also with additional a-priori knowledge. In particular, we suggest to validate the drivable area in semantic segmentation masks using given street map data. We present first results, which indicate that prediction errors can be uncovered by map-based validation.
Author(s)
Rüden, Laura von  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wirtz, Tim  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hueger, Fabian
Volkswagen Group Automation
Schneider, Jan David
Volkswagen Group Automation
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
International Conference on Machine Learning (ICML) 2020  
Workshop on AI for Autonomous Driving (AIAD) 2020  
DOI
10.24406/publica-fhg-411409
File(s)
N-636323.pdf (4.16 MB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024