Options
May 5, 2021
Conference Paper
Title
Switching Dynamical Systems with Deep Neural Networks
Abstract
The problem of uncovering different dynamical regimes is of pivotal importance in time series analysis. Switching dynamical systems provide a solution for modeling physical phenomena whose time series data exhibit different dynamical modes. In this work we propose a novel variational RNN model for switching dynamics allowing for both non-Markovian and nonlinear dynamical behavior between and within dynamic modes. Attention mechanisms are provided to inform the switching distribution. We evaluate our model on synthetic and empirical datasets of diverse nature and successfully uncover different dynamical regimes and predict the switching dynamics.
Author(s)