• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Approaching Neural Network Uncertainty Realism
 
  • Details
  • Full
Options
2019
Presentation
Title

Approaching Neural Network Uncertainty Realism

Title Supplement
Paper presented at Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Processing Systems, NeurIPS 2019, December 14th, 2019, Vancouver, Canada
Abstract
Statistical models are inherently uncertain. Quantifying or at least upper-bounding their uncertainties is vital for safety-critical systems such as autonomous vehicles. While standard neural networks do not report this information, several approaches exist to integrate uncertainty estimates into them. Assessing the quality of these uncertainty estimates is not straightforward, as no direct ground truth labels are available. Instead, implicit statistical assessments are required. For regression, we propose to evaluate uncertainty realism-a strict quality criterion-with a Mahalanobis distance-based statistical test. An empirical evaluation reveals the need for uncertainty measures that are appropriate to upper-bound heavy-tailed empirical errors. Alongside, we transfer the variational U-Net classification architecture to standard supervised image-to-image tasks. We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
Author(s)
Sicking, Joachim
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Kister, Alexander  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fahrland, Matthias
IAV GmbH
Eickeler, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hüger, Fabian
Volkswagen Group Innovation
Rüping, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schlicht, Peter
Volkswagen Group Innovation
Wirtz, Tim  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
Machine Learning for Autonomous Driving Workshop (ML4AD) 2019  
Conference on Neural Information Processing Systems (NeurIPS) 2019  
File(s)
Download (2.08 MB)
Rights
Use according to copyright law
DOI
10.24406/publica-fhg-411174
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024